1.7.1. Дайте определение механической работы. Чему равна кинетическая энергия системы материальных точек?

Задача. Олимпийская трасса для соревнований по бобслею в Лиллехаммере имеет перепад высот от старта до финиша \(h = 107 \text{ м} \). На стартовом горизонтальном участке («полоса разгона») спортсмены разогнали боб до скорости \(\dot{v}_0 = 6 \text{ м/с} \), с которой пересекли линию старта. В конце спуска по ледяной трассе сразу после финиша используется специальное тормозное устройство для гашения скорости боба на горизонтальной поверхности. Определите тормозной путь боба, считая, что коэффициент трения увеличивается на этом участке пропорционально расстоянию \(x \) от линии финиша: \(\mu(x) = \alpha \cdot x \), где \(\alpha = 0,1 \text{ м}^{-1} \). Примите, что на участке трассы от конца полосы разгона до финиша за счёт сил трения было потеряно \(\eta = 20\% \) механической энергии боба.

2.8.1. Какой газ называется идеальным? Запишите основное уравнение молекулярно-кинетической теории идеального газа и объясните смысл входящих в это уравнение величин.

Задача. Один моль идеального одноатомного газа занимает объём \(V = 10 \text{ л} \). В процессе нагревания при постоянном объеме газ получил количество теплоты \(Q = 120 \text{ Дж} \). Найдите изменение давления газа \(\Delta p \) в этом процессе.

3.8.1. Дайте определение электроёмкости. Как вычисляется эквивалентная ёмкость последовательно соединенных конденсаторов?

Задача. Расстояние между обкладками плоского воздушного конденсатора \(d = 1 \text{ см} \). Пространство между обкладками наполовину заполнено диэлектриком, как показано на рисунке. Диэлектрическая проницаемость диэлектрика \(\varepsilon = 4 \). Напряжение между обкладками конденсатора \(U = 5 \text{ В} \). Найдите напряженность электрического поля в диэлектрике.

4.6.1. Запишите формулу тонкой линзы. Чему равно увеличение, даваемое линзой?

Задача. С помощью тонкой собирающей линзы получили увеличение в \(k = 5 \) раз действительное изображение предмета, расположенного вблизи главной оптической оси линзы. Если расстояние между линзой и предметом увеличить на \(L = 1 \text{ см} \), то изображение предмета станет меньше в \(n = 2 \) раза. Определите фокусное расстояние линзы.